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ELECTRON OPTICAL CYLINDER LENS ACTION OF THE STRAY FIELDS
OF A CONDENSER

R. Herzog

ABSTRACT: Deflection in the stray field of a condenser
where the field is limited by a stop is computed and
compared with that of a homogeneous substitution field.
In both cases the axis beam is sharply deflected to the
same degree if the substitution field overlaps the
condenser plates by the distance i; it can be read
directly from Figure 3 for any stop position. The length
of the substitution field can also be taken from Figure
3 for screened magnetic fields, providing that the mag-
netization of the iron is sufficiently short of saturation.

Rays which do not pass the stray field in the axis
are deflected differently from those in the substitution
field. Since this additional angle of deflection Aa is
proportional to the distance from the axis, the activity
of the stray field can be described through a thin lens,
the focal distance of which can be taken from Figures 4
and 5 and from equation (7). However, for most practical
cases the focal distance is so large that it may be dis-
regarded. This indicates that, in computing the lens
action of transgradient electrical fields instead of the
real field, using a sharply defined substitution field
for-the computation is justified.

I. Introduction

The deflection of a beam of charged particles in a condenser has usually /18*

been computed by assuming that the field outside the space defined by the plates

equals zero and is homogeneous inside it. However; in actual fact the field

changes continuously from zero to its maximum value along a line which is com-

parable to the plate interval. The purpose of this work is to find out how

large an error is made in approximating the real field shape by a sharply de-

fined homogeneous substitution field. The result is anticipated: the field of

a condenser can be described very closely by a homogeneous substitution field,

but the length of the latter does not generally agree with the length of the /19

condenser plates; how this substitution length is to be figured will be shown
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during the article. For exact research an additional cylinder lens action of

the stray fields must be considered, and this overlaps the cylinder lens action

of the substitution field. In computing the lens properties of an ideal

cylinder condenser [1] or of an ideal plane plate condenser [2] with sharply

defined fields, consideration of the difference in potential at the edge of the

field was essential and in the final case this was the unique cause for the

lens properties. Now, in order to observe the action of the stray fields, we

shall compute the paths of the particles in the real condenser and compare them

with those in the substitution field with a difference in potential.

2. Deflection of the Beams at the Edge of the Field

Figure 1 shows the position of the coordinate system in reference to the

condenser plates and stops. The homogeneous substitution field begins at

position x = d/2 - i, i.e., the substitution field protrudes over the condenser

plates by the distance C. We wish to compute i in such a way that a beam

entering the condenser on the x axis will be deflected just as strongly as in

the substitution field.

Stop dO|-;, d.2 . l., // / plate

4§ 4 't

Mt/ / - I s///,//// · Condenser

r - ed //; plateStop / 
' °

t 
" '

/
Case A: Thin stop

Stop Ii ploate

Ike

Systems and Designation of the
Dimensions.

V designates the volt

velocity of the particles far

before the stop where the po-

tential is p = 0; let V be

positive (negative) for parti-

cles with the charge +e (-e).

At a position with potential c,

the velocity v of the particles

is provided by v = /(2e/m)(V - ).

We presume that the beam in

the stray field is only slight-

ly deflected; therefore we can

substitute the field intensity

and the potential in the real

path by the values of those

magnitudes on the linear
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extension of the path of the entering beam. In addition we presume that the

angle of deflection a and (/V are small magnitudes whose squares can be dis-

regarded. With these omissions we get

1 .
2V

V 2V Fydx. (1)

Here O means the potential at the field position where the beam is deflected

by a.

In the homogeneous substitution field

= 1 + ~2 + 1 - 2-
2 k 2

for

F = -
y 2k

and ~ = 0 and F = 0 for x < d/2 - C

If we introduce this into equation (1), we get

y 1 ='2
k 2

2V )( 2 i d ) (2)

3. Deflection in the Real Stray Field

The potential and the field intensity in the vicinity

computed from the potential and the field intensity on the

equations

( = -0 - yFO and Fy = F
0

Y Y

of the axis can be

axis by means of

d
- y a-Fo·
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In these the index 0 signifies the value on the axis (y = 0); below, for the

sake of simplicity, we shall disregard the index 0. If the above equations /20

are inserted into equations (1), if the quadratic members in y are disregarded,

if equation (2) is subtracted from it and extended infinitely to the boundary

x, we get the additional deflection caused by the stray field:

x

I +--2- ~1
" a a 2V lim [ + FV dx - I + 2 

~~~~x ~(3)

)] V x [( 2k)(x + (F + F 2 )dxx" = +. ~ + x + ~
4 2k 2 -

This infinite extension seems to be in contradiction with the condition of a

small deflection. Supposedly the integration should only be extended to that

value of x for which the field is already practically homogeneous, but the de-

flection is still small; as long as the radius of curvature of the path in the

field is large when compared with the plate interval, there exists a position x

which fulfills the above conditions. However, since the integrant has already

assumed the value of the homogeneous field for larger values of x, nothing is

then changed in the difference Aa if the integration is extended infinitely.

If this first limiting value disappears, it means that the axis beam y = 0

is deflected with equal sharpness in both the real and the substitution con-

denser. The condition for this is:

x

= lim d x + ( I + 2 F dX (4)

I + 2k 

The portion of equation (3) multiplied by y shows that from a parallel pencil

of rays there comes one beam with a focal point at position x = f = -y/As. We

find:
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x +c

I 1 2 d I
=rim F 2 dx - x - + + V2

4 x -+ oo Y 2k 4 
-0 coo

F2 dx .
x (5)

In order to be able to evaluate the above integrals, we need the potential

and the field intensity in the condenser stray field'.-These magnitudes were

computed in a previous work [3]; let us briefly review the sults re. Two

extreme cases, as shown in Figure 1, were considered: case A wi h .a very in

stop and case B with a very thick stop; all possible cases lie between these

limits.

4),1 + 2

2 r
n - I - 2r

arc cos - I
n + I

¢1 + 2
= 2f arc cos

F1 2 I + r
x 2d- m+r

¢1 + ¢2 2
F = - 2d 

( I +

I

(24A)

(24'B)
q - p - 2r

p + q

i n - r;.'-T - r ;
(25A)

r)(q - r)

- r 2
(25B)

1F - ¢2 I (I+r)

Y 2d m + r rI -r

¢1 -¢2 p + r
F r- (26B)
y 2d - r z

Here m, n, p, q are auxiliary magnitudes which depend on the geometric position

of the stop. It is best to derive m and n from the adjacent diagram (Figure 2),

as well as p and q of a scalar stop diagram according to Figure lB. Auxiliary
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modifying r depends on x by means of equations:

d k I - nr
x = - arc sin r +______,

T EIT n -r

- 2k m - I

- m + n

(I + n)(I - r) .

(I - n)(I + r)

d
x =-- arc

7T

k sin -qr b+ k I +- pr
sin r + - p+-ri r( )--

iT q-r itf p+r

r 7-
S I I A --- t n~-L_- e

_ __ _ 7 4' --- _- -_

- ~LB__I v W e4A

o 
-1 · 0 0 5

-S. n - I

Figure 2. For Deriving
in Case A.

the Auxiliary Constants

(22A)

(22B)
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For large values of x (r .> n or r -, q) these equations are transposed into:

d k 2(I - n2) 2k m - Ix = _ arc sin n +_ In ;
XT Tr n - r T m + n

d k
x = -arc sin q +- In

1 ?IT

2( - q ) b o I + pq

q- r X p+q

If equations [22] are differentiated, we get:

dx = dr,
IT n -r (I + r)3dr

dx = -
IT

/I -r 2

(p + r)(q - r)

With the assistance of these references, the integrals in

and (5) can all be computed. After a rather long intermediate

sertion into equation (4) leads to:

= * . acd + 2 i I- n 2I-arc cos n + 2 m - ln2(I -n) In
i--- m + n i

k

equations (4)

computation, in-

(6A)2 ;

I darc cosq + Ib- I l + 2I1.nk k P-q p+ 2V ln.
~~k T P +q p +q 2V I

(6B)

These equations were already derived in an earlier work [4] for the special

case of ~1 = -{2' It was already shown at that time that i can be made equal

to 0 by a suitable choice of stop distance and interval, i.e., that the ideal

substitution field possesses the same length as the condenser plates. This is

particularly advantageous with a radial electrical field, because then the

equipment axes before and behind the field are perpendicular to the radial

plane in which the condenser arcs end.
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Evaluation of equations (6) represent a very extensive piece of computa-

tion. In order to make this bearable for the experimenter, S/k was computed

for a large number of stop positions and the results summarized in Figure 3.

The relative stop interval d/k and the relative stop distance b/k were plotted

on the coordinate axes; now one point in the diagram corresponds to each stop /22

position; this is simultaneously the picture of the stop edge in a scalar

diagram in which a condenser plate has the position indicated and the second

plate lies symmetrically on the abscissa. The set of curves connect points with

the same C/k, where the dark curves refer to a very thick stop and the thin

curves to a very thin stop. The transconductance of the field can be dis-

regarded in the case of a small stop distance; for this reason thick and thin

stops here have the same action and the corresponding sets of curves touch each

other. It is also clear that both the stray field and thus C increase with an

increase in the stop interval or with an increase in the stop distance. How-

ever, the behavior with thin and distant stops (b > k) is striking: if such a

stop is removed from the condenser plates, i first decreases and only increases

again at a greater distance. The cause of this lies in the fact that the stop

at a short interval screens the stray field on the axis more severely than when

it is immediately in front of the plates. Only with a larger stop interval is

the field of the front sides of the condenser plates perceptible as far as the

axis and the deflection again enlarged.

With an unsymmetrical grounding of the condenser voltage, a short circuit

occurs in the homogeneous substitution field by the usually very small amount

Ac/k = - O.II (~1 + ¢2)/V; it is worth noting that this short is completely

independent of the stop. Thus a suitable choice of grounding makes it possible

to vary the actual condenser length within narrow limits and thus to compare

small errors in the mechanical production. The influence of the grounding

(computed here) on the length of the substitution field works against this

deflection error [5] and, the greater the plate interval compared to the length,

the more it reduces the deflection error.
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The lens operation of the

stray field is obtained by sub-

stitution in equation (5); after

a rather long intermediate computa-

tion during which the equations

d I n + I)3
k m+n I-n

... (4A)

and

(4 B)k ..+q
I - q2

must be considered, we get.T._,Iiq
P , I . 1 I

Figure 3. The Substitution Field Over-
shadows the Condenser Plates by the
Distance i. The thin curves refer to
a thin stop and the thick curves to a
thick stop. The hatched corner repre-
sents the beginning of a condenser
plate which is extended infinitely at
the right top; the second plate is
symmetrical to the d/k axis.

I I

f = -4
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arc cos
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+ r d 
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2
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I I*I ((pl2 - p)2 d I - qr d
-: lim-o -1-rrvi

f x -t f 4 Lco47d k q - r k
r - q

I + pq

p +q

/23
arc cos (-r)

2

. _
+ arc cos p k n

k w n

I

4

(+1 + {2 ) 2

[arc sin p +
47d

p + q

q - r

1 2V 

2V ln 2

arc sin q].

We now split f according to

II I

f fl f2

into one portion fl, which depends only on the field intensity and a portion

f2 which also depends upon the type of grounding of the plates and is infinite

with symmetrical current. If we disregard all members which contain V
3

in the

denominator in these equations and put on the right side only the members

dependent upon the field's shape, we get

~k( 4V 1/.(m .. _) arc - -Co n karc cos(- n) + In 2 (r - )
4 n m + m +

A-V .

4arc cm d -- arcCos (- + z + %qtat .+
d P+q PC4

aUc c (-)-d + I -arc os m.+ 

k A h Z .A .A * k
* + t arcsm -n are sin . ... . . .: ·

(B)

(7)

(8B)

(9A)

(9B)
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Figure 1B provides the magnitude of y.

In order to facilitate practical use the above equations were also worked /24

out for large number of stop positions and the results summarized in Figures

4 and 5. From them it is possible to read directly and quite precisely the

right side of equations (8) and (9) dependent upon the stop position, especial-

ly if the lens action of the stray fields is small compared with that of the

main field.

Figure 4. The Parameter Signifies

f 2
1 v
K 4.

Figure 5. The Parameter Signifies

f ¢1 +92 2
2 
K 4

4. Lens Activity of the Entire Field

The deflection which a charged particle experiences in going through a

real field is composed linearly of the deflections in the two stray fields and

in the homogeneous substitution field. Therefore the lens operation of the

entire field can be obtained by combining the lenses of the stray fields and

of the substitution field, as in geometrical optics. The corresponding equations

for three fields are [6]:

11



A i'fts'f.a',

Here fk and f' mean the focal distances of the individual lenses, f' that of

the whole lens system; A1,2 and A2,3 signify the optical distance (interval

between the opposite focal points) between the first and second or between the

second and third lens, and C1 and E1 indicate the distances of the entire

focal point system from the front focal point of the first lens or from the

back focal.point of the third lens. All of these magnitudes are counted as

positive in the beam direction.

We indicate the focal distances of the thin stray field lenses at the

beginning and at the end of the field only with fA and fE, respectively; in

addition we designate those of the homogeneous substitution field with f and

of the real total field with F; these focal distances are to be taken as

positive for a convex lens and negative for a concave lens. We moreover

designate the distances between the focal points of the homogeneous substitu-

tion field with g' and g" and those of the real field system from the edge of

the substitution field with G' and G"; these magnitudes are positive if the

focal points lie outside the substitution field. The relationships of these

magnitudes with those introduced above is as follows:

A'- - AfA;

f;'=-fI=f;

C' = - A, f

t -fIA+ +e;

C' fA - II -



From this we get:

Fly (V .+ JUf4 s+ Jel fg fir/

teh Q(X +p)_l t(I- - P- ) (10)

(, =+ f t, + K1 K Af'f' Ig '2

A ,

(A + e) (A + ") - e ' .- . .

Since fA and fE are usually much larger than f, corresponding approxima-

tions were provided in equation (10). With the determination of the cardinal

points of the real field system, the electron optical problem of the first

order for transgradient electrical fields is completely solved.

5. Applications and Examples

The previous computations contain two presumptions which are not usually

fulfilled completely in practical applications: first the rays are supposed to

pass the stray field near the x-axis and second parallel to it. However, as

we shall see from the following examples, the lens action of the stray fields

is so slight that the computations can be used for all practically important

cases without worry. Care must only be taken, by means of suitable auxiliary

stops, to keep the beam from approaching the edges of the stops and condenser

plates too closely.

A. Cylinder Condenser. This is where the two above presumptions are best

fulfilled; however, the field is not homogeneous inwardly, while the field /25

intensity is inversely proportional to the radius. But since the distance

between the plates is usually smaller than the mean radius, the field for these

purposes can be approximately considered as homogeneous.

Given a radial electrical field with a 100 aperture angle and plate radii

R1 5.2 cm, R2 = 5.0 cm. Voltage is symmetrically grounded, thus 2= -21

Let the field be defined on each side by thin stops of 2b = 0.28 cm distance

and d = 0.2 cm interval. First we shall look for the angle of deflection of

those rays which move in the field in a circle of mean radius a = 5.1 cm; the

path of these particles outside the field coincides with the optical axis.
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In addition the position of the focal points apd of the focal distances of the

entire field are computed.

We must first determine the length of the substitution field. Since k =

= 0.1 cm, d/k = 2 and b/k = 1.4; we derive C/k = 0.8 for thin stops from

Figure 3; the path curvature for this distance is the same as in the field.

With a mean path radius a
e
= 5.1 cm, the beam in each stray field will there-

fore be deflected by 54'. The total beam deflection is therefore b = 54' +

+ 100 + 54' = 11048".

In order to compute the lens action, let us take from the previously

cited work:

f sin c2f,

a. yff 12.0 Cm.
r* tg i0.

We also need the transmission ratio U of the condenser; by this we mean

the quotients of the accelerating current and the deflection current for those

particles which go through the middle circular path. From the power equilibrium

we get:
V z

flAs 2 .ln-R' (11)

In our case we get: U = 12.75. Now from Figure 4 we take fl/k (l1 22

= - 1.8; and thus fl = fA = fE = -1.8k16U2 = -470 cm.

From the approximation equation (10) we finally find F = 13.2 cm and G =

= 12.7 cm. It can be seen from this that the lens activity of the stray fields

is so slight that it does not essentially change that of the substitution field.

Therefore the lens activity of the stray fields can usually be disregarded in

considering the grazing section of the pencil of rays. However, disregarding

14



deflecting action of the stray fields would have produced an error of about

18% in the angle of deflection and the focal distance.

B. Plane Plate Condenser. Given a condenser with a plate length of 1.2 cm

and a plate interval of 2 k = 0.4 cm. Let the field be defined by a thick

entrance stop of 2b = 0.2 cm distance and d = 0.4 cm interval and a thin exit

stop of 2b = 0.4 cm distance and d = 0.1 cm interval. Let the plate inside

the path be grounded (1, = 0). To find the "sensitivity" of this arrangement,

thus for example, the angle by which those beams which transmitted the current

V = 10 2 are deflected.

For the entrance stop d/k = 2, and b/k = 0.5; from Figure 3 we find:

C/k = 0.7 and thus i = 0.14 cm. For the exit stop d/k = 0.5 and b/k = 1;

analogously we find: E/k = 0.3 and therefore i = 0.06 cm. Since the ground

can be presumed here to be unsymmetrical, we also have to consider the member

At/k = - 0.11 (~1 + 42 )/V = - 0.01; however, in comparison with the length of

the substitution field, its extent is very small (on each side - 0.002 cm) and

may therefore be disregarded. Thus the length of the substitution field is

L = 0.14 + 1.2 + 0.06 = 1.4 cm. We take the formula for computing the deflec-

tion from the work cited at the beginning. Htere L-s = k and therefore s

= 0.143. In addition

F = o.h.V V
ln k 0,4 4

and E = e V.

From equation {4} there we thus find p = 5.425 and from equation {16}... =

= 10021 '. Without regard to the stray fields the angle of deflection would

amount only to 8032'; thus the error here also amounts to almost 20%. The

exit position of the beam is located at Ln2 = L/2p = 0.13 cm from the axis;

the distance from the edge of the condenser plate or stop amounts to 0.07 cm

and is therefore still large enough for the above computations to be applied

without worry.
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The focal distances of the stray fields arp computed here by means of

equation (7) and Figures 4 and 5. We find fE = -2,490 cm and fA = -2,050 cm; /26

thus the lens action of the stray fields here too is also so slight that it

can be disregarded in relation to that of the substitution field (f = 42 cm).
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